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Artificial Intelligence in the Diagnosis of Migraine
(with or without Aura) in Adults: A Systematic Review
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Abstract

Objective: To assess the performance of artificial intelligence (Al) systems in the diagnosis of migraine with aura and migraine
without aura in adults.

Background: Migraine is a chronic neurovascular disorder that affects over 1 billion people across the world. Currently diagnosed
based on clinical criteria given by the International Headache Society, its accurate diagnosis is challenging because of the existence
of numerous mimics.

Methods: Literature search of PubMed, Scopus, and Embase was conducted on July 6, 2021. Original peer-reviewed articles in which
Al was applied for diagnosis of migraine with or without aura in adults (>18 years) were included. The risk of bias was evaluated
using Quality Assessment of Diagnostic Accuracy Studies-2.

Results: Thirty-four papers were included, spanning close to a hundred Al models being used for neurophysiological, clinical or
radiological diagnosis of migraine. The most common were Support Vector Machine and Artificial Neural Network. The median
accuracy in the studies included was highest for those employing radiological data (88.85%) and lowest for clinical attributes (81%).
Risk of bias assessment yielded four studies (11.8%) with an overall low-risk of bias. Twenty-three out of 34 studies had ‘high’-risk
of bias in the patient selection domain, the most frequent cause being a case-control study design.

Conclusion: Evidence suggests that Al is potentially valuable in the diagnosis of migraine. Concerted efforts are necessary to ensure
uniformity in reporting of data, ethical handling of datasets, and for progress from experimental status to deployment in actual
clinical settings.

Key words: Migraine, artificial intelligence, migraine with Aura, migraine without Aura.

Key message: Artificial intelligence (Al) models are being developed for application in various fields of medicine. This is the first
systematic review to highlight the use of Alin the diagnosis of migraine and thirty-four papers were included. This review has found
that Al has the potential to classify migraine with a high degree of accuracy with objective use of clinical, EEG or radiological data.
Future studies in this field should aim to include larger and more diverse datasets, report outcomes in a standard manner, and
integrate Al into actual clinical settings.

To standardise the process, a classification system was
developed by the International Headache Society (IHS), the
most recent of which is the third edition of the International
Classification of Headache Disorders (ICHD-3), launched in
20188 The ICHD classifies headache disorders into primary
headaches, secondary headaches, and neuropathies and

Introduction

Migraine is a chronic neurovascular disorder that affects
over 1 billion people across the world'. Itis the third most
frequent disorder worldwide with a 1-year prevalence of
15%?3 and is the second most disabling disease globally

contributing to 45-1 million years lived with disability
(YLDs)**. It accounts for nearly 5-6% of the global disease
burdens. This burden is largely avoidable with effective and
affordable treatments. However, a major challenge is its
accurate and timely diagnosis.

Headache is the most common presenting neurological
symptom in primary care’. Currently, the diagnosis of
headache disorders is based on clinical history and is
therefore susceptible to a high degree of information bias.

facial pains. Migraine is a primary headache disorder which
has two major types-migraine with aura and migraine
without aura. In migraine with aura, transient focal
neurological symptoms may precede or accompany the
headache. Migraine without aura is more than twice as
frequent as migraine with aura®.

Due to the existence of numerous migraine ‘mimics,
migraine is frequently underreported and misdiagnosed
(in ~50% of headache cases) as sinusitis, other headache
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disorders like tension headache and cervical pain syndrome,
stroke, transient ischaemic attack, multiple sclerosis,among
others>'®", In another study, 88% patients who met the
ICHD criteria for migraine were wrongly diagnosed with
sinusitis'>'3, Kernick et al reported that a formal diagnosis
was not made in nearly 70% of patients presenting with
new onset headache™.

Data-driven approaches using machine learning (ML) or
deep learning (DL) are being tested in the medical field
to avoid biases attributed to human factors. Artificial
intelligence (Al) models accelerate the identification and
interpretation of relevant medical data from multiple
sources and areas of interest'. ML methods analyse a large
number of‘training’ cases to produce the correct output
for the given input on test cases. According to the types
of tasks that they intend to solve, basic ML algorithms fall
roughly into two categories: supervised and unsupervised.
‘Supervised’ algorithms learn from pre-labelled datasets
to classify a specific outcome (e.g., presence or absence
of migraine in the context of the current study). Newer
‘unsupervised’ Al systems such as DL analyse unlabelled
data finding complex co-relations in previously
unrecognised patterns (e.g., use of principal component
analysis for feature selection). Supervised models may
achieve high accuracies since the data used for training
has already been labelled. Performance of ML models
can be evaluated using different outcome measures such
as accuracy, area under the receiver operating
characteristic curve (AUQ), recall (sensitivity), precision
(positive predictive value) and calibration (goodness of
fit). While accuracy and AUC are the most frequently
reported performance metrics, if considered in isolation
they may not always reflect the true performance of the
model’s,

As per our knowledge, this is the first systematic review
aiming to assess the potential role of different Al-based
approaches in the diagnosis of migraine with and without
aurain adults.

Methodology

This systematic review was performed according to the
Preferred Reporting Items for Systematic Reviews and
MetaAnalysis (PRISMA) guidelines'”.The study protocol was
registered and published on the international Prospective
Register of Systematic Reviews (PROSPERO) (registration
number CRD42021267186).

Search Strategy

A search syntax was created using relevant keywords for
migraine and artificial intelligence. The search was

conducted on July 6,2021 on three databases, i.e., PubMed,
Scopus, and Embase. Filters were applied to include English
language search results published in or after 2000. The
search results were compiled using EndNote software. The
titles and abstracts were then independently screened by
three reviewers (AJ, OB, NR). Disagreements were resolved
either through discussion or by consulting the fourth
reviewer (SS). Full texts of the selected results were
retrieved and matched against the inclusion criteriain the
same mannet.

Selection Process

Weincluded studies in which an Al algorithm was applied
for diagnosis/ classification of migraine with and/or without
aura in adult patients (>18 years) in any hospital setting.
We excluded case reports, case series, reviews and meta-
analyses as well as studies mentioning neither the accuracy
nor AUC of the chosen model. Rare subtypes of migraine
(e.g., familial, vestibular, hemiplegic) were notincluded in
this review.

The studies were assessed for eligibility by AJ, OB and NR
independently with a final consensus reached through
discussion or by consulting SS.

The references of the full texts chosen for the study were
screened for articles matching the eligibility criteria.

Data Collection

The data was extracted independently by the three
reviewers, on (1) study characteristics; and (2)
performance metrics of the index test and was then
tabulated and cross-checked by all the reviewers (Tables
01, 1),

Since 31 out of 34 papers reported accuracy of their ML
models, this was chosen as the primary performance metric.
Median accuracy was subsequently calculated using the
highest accuracy reported in each paper.

Risk of Bias Assessment

The risk of bias was evaluated using the Quality
Assessment of Diagnostic Accuracy Studies (QUADAS-
2) criteria’®. Bias was assessed by AJ, OB and NR
independently using various signalling questions tailored
for the review. Each of the four domains could be of low,
unclear or high-risk of bias. If the answer to any one
signalling question was‘'no’ or‘unclear;, the risk of bias of
that domain was considered high or unclear respectively.
A high or unclear risk of bias of any one domain resulted
in the risk of bias of that study being high or unclear
respectively.
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Table I: Summary of the studies included in this systematic review using neurophysiological data as input.

S.No. Authors Year  Reference Model(s) Total number of Input Training/ Accuracy/ Sensitivity/
for participants Validation/ AUC Specificty
diagnosis Testset/
Validation
Method
Input data: Neurophysiological Investigations
1. Akbenetal® 2012 IHS MLPNN (and 30(15 EEG 80%/-/20% 93.3%(4Hz) 93.3%/93.3%
RBF, LVQ, SOM migraineurs
for comparison) +15HQ)
2 Akbenetal® 2016 IHS SYM 60 (30 MwoA + 30 HC) EEG -/-/- 88.4% (T3) 90%/86.7%
3. AlkanetaP 2011 IHS K-means 30(15 migraineurs EEG 90%/—/10% 86.6% —/-
clustering +15H0)
4 Bellotti et a? 2007 - ANN 31(16 MwoA +15H() Spontaneous -/-/- AUC>0.95 -/-
EEG (tau-TDG)
5. Cao et a” 2018 ICHD-2 LDA 80 (40 MwoA +40H(Q) Inter-ictaland pre-ictal ~ 27/13/-K-fold 63.0 +6% (LDA) —/-
kNN phase EEGs Vi(k=3) 71.0 5% (KNN)
MLPNN 67.0+ 6% (MLPNN)
NB 65.0 +5% (NB)
SVM, linear kernel 71.0+4% (SVM, linear kernel)
SVM, RBF kernel 76.0 +4% (SVM, RBF kernel)
6. deTommaso 2003 IHS ANN 30 (15 MwoA + 15 H() SVEP-EEG —/-1- AUCO0.78 (ANN; F1) -/-
AUC0.88 (ANN; cLwav)
et af? SYM AUC0.92 (SVM; F1)
AUC0.86 (SVM; o wav)
7. Frid et aP* 2020  ICHD-3beta ~ SVM with RBF 53 females with EEG -/-/- 84.62%/AUC0.88 -/-
episodicmigraine
8. Subasietal® 2019 - SVYM 30 (15 MwoA + 15 H() EEG —/-/- (Window period =3s —/-
10-fold CV, Without flash/with flash
Loocv 80.74%/84.07% (SVM)
kNN 77.78%/83.33% (KNN)
ANN 75.93%/82.22% (ANN)
RF 75.19%/85.19% (RF)
DT (CART) 67.04%/77.78% (CART)
DT(C4.5) 64.81%/77.04%((4.5)
Rotation forest 77.41%/83.70% (Rotation Forest)
DT (REPTree) 65.93%/74.81% (REPTree)
DT (Random Tree) 68.15%/76.30% (Random tree)
DT (ADTree) 66.67%/73.33% (ADTree)
DT (LADTree) 70.74%/77.41% (LADTree)
DT (NBTree) 65.93%/75.93% (NBTree)
9. Taufique et al”’ 2021 - ANN 57 (Patient data taken SSEP-EEG -/-/- 76% (ANN) -/-
from Zhu et al) 5-fold CV
10. thuet al® 2019 - DT (XGB trees) 57 (29 MII, 13 MI, SSEP-EEG —/-1- HC-MI - 88.0% (XGBTree) 89.3%/90.3%
15HGs) 10-fold CV (XGBTree)
RF HC-MI - 84.4% (RF) 84.1%/84%(RF)
SYM HC-MII - 84.6% (SVM) 85.7%1/85.8% (SVM)
kNN HC-MI-78.5% (KNN) 78%/78.2%(kNN)
MLPNN HC-MII - 83.3% (MLPNN) 82.6%/85.2%
(MLPNN)
LDA MI-MII-69.5% (LDA) 69.3%/67.1% (LDA)
R HC-MI-69.7% (LR) 68.9%/70.6%(LR)

ANN: Artificial neural network; CART: Classification and regression tree; DT: Decision tree; HC: Healthy controls; IHS: International Headache Society; ICHD: International Classification of Headache Disorders;
KNN: k-nearest neighbors; LDA: Linear discriminant analysis; LOOCV: Leave one out cross validation; LVQ: Learning vector quantisation; LR: Logistic regression; MI: Migraine ictal; MIl: Migraine inter-ictal;
MLPNN: Multi-layer perceptron neural network; MwA: Migraine with aura; MwoA: Migraine without aura; NB: Naive bayes; RBF: Radial basis function; RF: Random forest; SOM: Self-organising map; SSEP:

Somatosensory evoked potential; SVEP: Steady state visual evoked potential; SYM: Support vector machine; XGB: Extreme gradient boosting.
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Table 2: Summary of the studies included in this systematic review using clinical attributes as input data.

S.No. Authors Year  Reference Model(s) Total Input Training/ Accuracy/ Sensitivity/
for number of Validation/ AUC Specificty
diagnosis participants Testset/
Validation
Method
Input data: Clinical Attributes
. Celiketaf® 2015 ICHD-2 Immunos-1 850 —/—-/- 94.4706% 0.947/1 (Immunos-1)
Immunos-2 people with (Immunos-1) 71.6471% (Immunos-2) 1/0(Immunos-2)
Immunos-99 “headache problems” 95.6471% (Immunos-99)  0.949/1 (Immunos-99)
AIRST Questionnaire, 99.2941% (AIRST) 0.995/1(AIRST)
AIRS2 40attributes 98.8235% (AIRS2) 0.995/0.992 (AIRS2)
AIRS2-Parallel 99.6471% (AIRS2-Parallel) 0.998/1(AIRS2-Parallel)
(LONALG 98.7059% (CLONALG)  0.998/0.967 (CLONALG)
(SCA 99.1765% (CSCA) 0.995/0.992 (CSCA)
2. Celiketa® 2017 ICHD-2 ACO 850 people with —/-/- 10-fold CV 98.2% 0.982/0.967
“headache problems”
Questionnaire, 40 attributes
13. Holsteen etaP' 2020 ICHD-3 Multivariable LR 178 patients with Diary entry 178/-/- 0.56(95%(l, 0.54-0.58) -/-
R episodicmigraine 10-Fold CV
14. KatsukietaP? 2020  ICHD-3beta  NLPusingANN 848 patients with Questionnaire —/-/- 77.5%% -/-
primary headache
15. Khayamnia 2019 - Fuzzy C 190 patients with (linical attributes 90%/—-/10% 92% (Fuzzy () 0.94/0.81 (Fuzzy ()
etal33 headache 10-Fold CV
(133 withmigraine)
MLPNN 92% (MLPNN) 0.96/0.81 (MLPNN)
SUM 100% (SVM) 1/0.99 (SVM)
16. Kwonetal® 2020 ICHD-3, XGBoost 2,162 patients Clinical attributes 864/-/600 81% 88%/95%
ICHD-3 beta 10-Fold CV
17. Krawczyk 2012 ICHD-2 NB 579 with headache (linical attributes ~ —/=/=10-FoldCV ~ 72.02+£4.21% (NB) -/-
et al* DT (C4.5) (169 with migraine) 76.51+3.04% (C4.5)
SUM 76.34+1.76% (SVM)
Bagging 78.24+2.98% (Bagging)
Boosting 76.68 +2.43% (Boosting)
RF 79.97 +3.13% (RF)
18. Sarsam et aP® 2020 - SVM (SMO) 237,098,462 Tweets 90%/—/— 95.53% (SMO) —/-
DT (J48) English tweets 10-fold CV 61.49% (J48)
1-rule classifier (OneR) 55.27% (OneR)
kNN (IBK) 50.93% (IBK)
19. SedghietaP” 2016 Neurologist NB 6,912records (linical attributes 66%6/—/33% 79.3% (NB) -/-
SVM (392 migraine) 10-fold CV 78.4% (SVM)
R 77.4% (LR)
2. Simiaeetal® 2020 ICHD-3 R 579instances  Selected attributes from ~/-/- 714% -/~
(103 MwoA, 66 MwA) the HS criteria
21 Simiae et aP® 2021 ICHD-2 Weighted Fuzzy 579 with primary (linical features —/-/- 75% 86%/—
(-means headache
(lustering Algorithm
2 Wu et aP 2015 ICHD-3 Multiple Fuzzy 379total 20weighted —/-/- 97.2% -/-
C-means Clustering (213 for migraine) dlinical features (multiple Fuzzy ()
Fuzzy C 63.6% (Fuzzy ()
Fuzzy Cwith 59.8% (Fuzzy Cwith
geneticalgorithm geneticalgorithm)
ACO 89.2% (ACO)

ACO: Ant colony optimisation-based classification algorithm; AIRS: Artificial immune-recognition system; ANN: Artificial neural network; CLONALG: Clonal algorithm; CSCA: Clonal selection classification
algorithm; DT: Decision tree; HC: Healthy controls; IBk: Instance-based learning with parameter k; IHS: International Headache Society; ICHD: International Classification of Headache Disorders; KNN: k-
nearest neighbours; LR: Logistic regression; MLPNN: Multi-layer perceptron neural network; MwA: Migraine with aura; MwoA: Migraine without aura; NB: Naive bayes; NLP: Natural language processing;
RF: Random forest; SMO: Sequential Minimal Optimisation; SVEP: Steady state visual evoked potential; SVM: Support vector machine; XGB: Extreme gradient boosting.
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Table 3: Summary of the studies included in this systematic review using radiological imaging as input data.

S. No. Authors Year  Reference Model(s) Total number Input Training/Validation/ Accuracy/AUC Sensitivity/
for of Test set/ Specificity
diagnosis participants Validation Method
Input data: Radiological Imaging
23. Chen et af*? 2021 IHS SVM 42 (21 MwoA + 21 H() fMRI —/-/-100CV 83.33% 90.48%/76.19%
24, Chongetal 2017 - DQDA 108 (58 with migraine + 50 HC) fMRI —/—/-10-fold CV 86.1% /-
25. Chongetaf? 2021 ICHD-3 LR 34 with migraine MRI (T1 —/—-/-L00CV 97.06% -/-
(18 MwA, 16 MwoA) weighted and DTI)
and 48 with PPTH + (Clinical data
26. Garcia- 2017 - SVM 52 (15 HC, MRI —/-/- All Feature selection /-
Chimeno et al’’ 19 sporadic migraine, (diffusion tensor) Stratified method 90% / 78-98%
18 chronic migraine and multiple K fold method (SVM; best with
and medication overuse) questionnaire for SYM gradient tree boosting)
Boosting 93%/ 87-95%
(Adaboost) (AdaBoost; best with
random forest)
NB 67% / 60-98% (NB; best
with gradient tree boosting)
27. Jorge- 2014 - ANN 53 (15 HC, 20 sporadic fMRI 20/15/19 92.86% (ANN) 1/0.9(ANN)
Hernandez migraine, 19 with migration
etal® due to medication overuse)
LDA 50% (LDA) 0.45/0.38 (LDA)
SVM 79.92% (SVM) 0.36/0.38 (SVM)
k means Cluster 57.14% (k means cluster) 0.47/0 (k means)
kNN 57.14% (KNN) 0.49/0.47 (KNN)
AdaBoost 64.29% (AdaBoost) 0.74/0.64(AdaBoost)
28. Li et al* 2020 - SYM 26 (14 migraineurs fMRI 58% /—/42% 92% (SVM) /-
kNN +12 HQ) 100% (kNN)
DT 88% (DT)
NB 92% (NB)
RF 83% (RF)
ANN 93% (ANN)
29. Mengetaf® 2018 - (NN 40 (20 migraineurs + 20 HC) MEG 30/-/104-Fold CV 81.25% /-
30. Roccaetal® 2021 ICHD-2 CNN 268 imaging scans (56 for migraine) ~ MRI 56%/14%/30% 92.90% —/97.10%
31 ‘Schwedt et al” 2015 ICHD -2 DQDA 120 (66 migraineurs + 54 HCs) SMRI 90%/-/10%  Migraine vs HC — 68% (DQDA) /-
10-fold CV EM vs HC - 67.2% (DQDA)
(M vs HC - 86.3% (DQDA)
(M vs EM - 84.2% (DQDA)
DT Migraine vs HC - 64.7% (DT)
EM vs HC - 66.5% (DT)
(M vs HC - 74.6% (DT)
(M vs EM - 83% (DT)
32. Tuet al* 2020 ICHD-2 Linear SYM  Study 1: 116 (70 MwoA, 46 H() MRI —/-/-L00CV 91.4% (SVM; Study 1) 93%/89%
(SVM; Study 1)
Study 2: 38 (19 MwoA, 19 HO) 84.2% (SVM; Study 2) 84.2%/84.2%
(SVM; Study 2
Study 3:76 (18 MwoA, 73.1% (SVM; Study 3) 77.8%/71.4%
58 non-migraine pain and HC) (SVM; Study 3)
33. Yang et al® 2018 ICHD -2 AlexNet (NN 64 (21 MwoA, 15 MwA, 28 H() fMRI 80% /—/20%4 98.63% -/-
-fold CV (AlexNet CNN ; HC vs
migraine using RFCS)
Inception module - 99.25% (GoogleNet CNN;
based GoogleNet CNN HC vs migraine using RFCS)
SVM(for comparison) 83.67% (SVM)
34 Zhangetal® 2016 ICHD-2  Multi-kernel SYM 49 (21 MwoA, 28 H() fMRI and sMRI —/—-/-L00CV 83.67% 92.86%/71.43%

ANN: Artificial neural network; CM: Chronic Migraine; CNN: Convolutional neural network; DT: decision tree; DQDA: Diagonal quadratic discriminate analysis; EM: Episodic migraine; HC: Healthy controls;
IHS: International Headache Society; ICHD: International Classification of Headache Disorders; KNNP: k-nearest neighbours; LDA: Linear discriminant analysis; LOOCV: Leave one out cross validation; LR:
Logistic regression; MEG: Magnetoencephalogram; MwA: Migraine with aura; MwoA: Migraine without aura; NB: Naive bayes; PPTH: Persistent post-traumatic headache; RF: Random forest; RFCS: Regional
functional correlation strength; SVM: Support vector machine.
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Results
Study selection

After removal of duplicates and manual reference checking,
884 citations from PubMed, Scopus and Embase were
screened based on title/abstract. 75 studies were sought
for retrieval. Finally, 34 articles remained after full-text
screening (as shown in the PRISMA diagram).

Study characteristics

Al models gather data from a multitude of sources and
emulate logical decision making to achieve the desired
output. In the current review, these models aid
neurophysiological, clinical and radiological diagnosis of
migraine. The most popular models used were Support
Vector Machine (SVM), Artificial Neural Network (ANN) and
Decision Tree (DT). Otheralgorithms used include K-Nearest
Neighbour (KNN), Logistic Regression (LR), Fuzzy-C, Naive
Bayes (NB) (Fig. 1). A general trend showing an increasing
number of studies on the use of Al algorithms in the diagnosis
of migraine over the past 2 decades was noted (Fig. 2).

Al in Neurophysiological Diagnosis of Migraine

10 studies used Al models to diagnose migraine based on
neurophysiological modalities. The median accuracy was
found to be 85.9% (range 76.0 to 93.3%).

In their 2010 study, Akben et al'® aimed to determine the
most effective flash stimulation frequency and time duration
to detect migraine using an Artificial (Multi-layer
perceptron) Neural Network (MLPNN) classifier and radial
basis function networks (RBF), learning vector quantisation
and self-organizing map networks for comparison. Best
accuracy obtained was 93.3% for MLPNN, at 4 Hz. Their
2016 study® assessed which EEG channels and brain lobes
were the most decisive for diagnosis, using an SVM model.
Power spectral densities (PSDs) obtained from flash
stimulated and non-stimulated EEG signals were fed to the
classifier. Best accuracy was 88.4% for T3 channel.

Alkan etal (2011)* used histogram differences of flash and
non-stimulation EEGs to detect migraine using a K-means
cluster algorithm, achieving an accuracy of 86.6%.

Bellotti et al (2007)* recorded spontaneous EEGs to classify
migraineurs (without aura) and healthy controls. Using a
supervised feed-forward two-layered neural network, they
recorded an AUC of >0.95 (tau-TDG).

Identification of via datab and

PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and other sources

Identification of studies via other methods

Records removed before

Records identified from screening.

databases:

Records marked as inefigible

Identification

Screening

PubMed, n = 309

Records screened

by automation tools (n=18
non-English; n= 82 from

Scopus, n= 634
Emtfase, n= 308 before 2000)
T =
(TotalN=125m) Duplicate records remaoved (n
=291)
p— Yy

Records excluded**
{n = 212 books/ conference

Records identified from:
Citation searching (n = 24)

v

(n =860) abstracts removed by automation
tools; 586 excluded manually)
h 4
Reports sought for retrieval »| Reports not retrieved
(n=862) (n=3)

A J

Reports sought for retrieval
(n=13)

Reports not retrieved
(n=1)

v

J

A Reports excluded:
Reports assessed for eligibility " Reason 1 not peer-reviewed
(n=59) article (n=13)

v

(metuded | |

Studies included in review
(n=34)

Reason 2: does not fit
inclusion criteria of review (n
=13)

Reason 3: not in English (n =
1)

Reports excluded

> Reason 1: not peer-reviewed
article (n =5)

Reason 2: does not fit
inciusion criteria of review (n
= 5)

Reports assessed for eligibility
(n=12)

Flowchart 1: PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and other sources.

From: Page MJ, McKenzie JE, Bossuyt PM et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021; 372: n71. doi:
10.1136/bmj.n71.
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deTomasso etal (2003)% elicited steady-state visual evoked
potentials (SVEPs) in the low frequency range (3-9 Hz) and
studied the temporal variations in the F1 component
obtaining a maximum AUC of 0.92 using SVM.

Frid et al (2020)* recorded 3-minute-long resting state
EEGs in the interictal period to compare patients of
migraine with and without aura. Using SVM with RBF kernel,
they were able to obtain an average classification rate of
84.62%. The same model was found to achieve the
highest accuracy (76 + 0.04%) in a study by Cao et al
(2018)* where they tested six Al models to compare the
interictal and preictal phase brain electric activity using
resting-state EEGs.

Subasi et al (2019)% assessed accuracy of 12 models in the
diagnosis of migraine without aura using a 10 - 20 EEG
system with 256 Hz sampling frequency. The highest
accuracy obtained was 84.07% for SVM for a window period
of 3 seconds with photic stimulation.

Taufique et al (2021)* used a hardware chip-based ANN
classifier, with its utility in wearable settings, to facilitate
early diagnosis of migraine. The somatosensory evoked
potential (SSEP) data was pre-processed with features

extracted — N20 latency, root-mean-square of late high
frequency oscillations (HFO) and power spectral bands -
and fed into the classifier. An accuracy of 76% was achieved.

Zhu et al (2019)?® conducted a study to differentiate
between migraineurs in the ictal and inter-ictal phases and
healthy controls using various features of SSEP signals. A
total of 8 ML algorithms were assessed, with the highest
accuracy obtained for extreme gradient boosting (XGB)
trees at 89.3% in the ictal phase.

Al in Clinical Diagnosis of Migraine

12 studies used Al models to diagnose migraine based on
clinical attributes. The median accuracy was 81% (range 75
to 100%).

Celik et al diagnosed different types of primary headaches
using an ant colony optimisation-based algorithm (2017
paper)?® and multiple artificial immune system (AIS)
algorithms (2015 paper)*’; achieving best accuracy of 98.2%
and 99.65% (AIRS2-Parallel) respectively (Table Il).

Holsteen et al (2020)*' developed an LR model to classify
subjects with episodic headache into migraine day and

SVM

ANN

DT

Artificial Immune System
KNN

Fuzzy-C

LR

NB

Boosting

CNN

RF

LDA

ACO

DQDA

K-Means Clustering
Bagging

OneR

Rotation Forest

0 4.5

18

9 13.5 18

Fig. 1: The various Al algorithms used in the diagnosis of migraine.
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healthy day categories based on prospective daily diary
entries (including self-prediction and self-reported
exposure to common trigger factors), using a custom mobile
phone application. The model could predict migraine risk
only slightly better than chance with an AUC of 0.56 (95%
Cl: 0.54, 0.58) (Table II).

Katsuki et al (2020)*?developed an ANN model for automated
diagnosis of primary headache using demographic
characteristics and unstructured sentences (in Japanese) in
the questionnaire which were analysed using natural
language processing (NLP). The overall AUC, mean precision,
mean recall, and mean F value of the model were 0.7759,
0.8537,0.6086, and 0.6353, respectively (Table II).

Khayamnia et al (2019)* developed a fuzzy expert-based
system using the Learning-From-Examples algorithm and
Mamdani model for the diagnosis of common headache
types including migraine. Diagnostic parameters like
presence or absence of symptoms like aura, vomiting,
diplopia, etc., were used as input variables. They also
evaluated the performance of MLPNN and multiclass SVM.
For classification of migraine, SVM was the most accurate
(accuracy = 100%). Overall accuracy of SVM was 90% (vs
88% for MLPNN) (Table II).

In studies by Krawczyk et al (2012)** and Kwon et al (2020)*,
automated diagnosis of headache disorders was done based
on clinico-demographic data collected using questionnaires.
Krawczyk et altested six machine learning algorithms (Table
I1). Highest accuracy of 79.97 + 3.13% was achieved by the

random forest model. Kwon developed afourlayered binary
XGBoost13 based stacked model. This model was compared
with other classifiers (Table Il). XGBoost13 using the least
absolute shrinkage and selection operator (LASSO) method
for feature selection was the most accurate (80.71%;
sensitivity 52.73%, specificity 45.61%).

Sarsam et al (2020)3¢ collected and labelled a total of
238,506,796 English tweets according to their geo-spatial
location information. The data was clustered into‘sad’and
‘neutral’ using K-means clustering. The association rules
mining approach (using Apriori algorithm) was applied to
extract the features of migraine associated with certain
climatic factors in each of the two emotions. Finally, four
classification algorithms (Table Il) were applied to detect
migraine, with Sequential Minimal Optimisation (SMO)
attaining the highest accuracy of 95.53%.

Sedghi etal (2016)* distinguished migraine patients from
stroke or other mimics using structured and unstructured
clinical data-sources. A sampling method was utilised to
create two balanced datasets from the original imbalanced
data and the data then analysed by NLP, text-mining and
data mining methods. The performance of different
classifiers was assessed (Table Il) - with the highest average
accuracy obtained for NB (79.3%).

Simiae et al (2021)%, using the clinico-demographic data
collected in an earlier study**, estimated the optimal number
of clusters using the Calinski-Harabasz index, assigned
weights to the chosen attributes using the Analytical
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Fig. 2: Number of studies conducted in the last two decades.
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Hierarchical Process and classified the various primary algorithm; obtaining an overall accuracy of 75% (Table Il).

headache disorders using the Fuzzy C-Means Clustering Wu et al (2015)* also used weighted clinical features to
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diagnose primary headache disorders using the Multiple
Fuzzy C-Means Clustering algorithm. Its accuracy was
compared with other conventional models, and was the
highest at 97.2% (in the diagnosis of migraine) (Table II).

In another study by Simiae et al (2020)* a hybrid fuzzy
clustering approach created by combining the fuzzy partition
method and maximum likelihood estimation clustering
algorithm was used to diagnose primary headache disorders
using selected clinico-demographic attributes. An accuracy
of 77.4% was achieved (Table Il).

Al in Radiological Diagnosis of Migraine

10 studies used Al models to diagnose migraine based on
imaging modalities. The median accuracy was 88.85%
(range 81.25 to 100%) (Table III).

Chong et al (2017)*' obtained resting state functional
connectivity (RSFC) data in the “eyes closed” state for the
108 individuals in their study. A total of 33 known pain-
processing brain areas were selected. Pre-processing using
principal component analysis (PCA) and subsequent
classification using diagonal quadratic discriminate analysis
(DQDA) found that six regions (bilateral amygdala, right
middle temporal, posterior insula, middle cingulate, and
left ventromedial prefrontal brain regions) had the highest
contribution in discrimination between migraineurs and
healthy controls. Their best accuracy was 86.1% (Table l1l).

Chen etal (2021)* performed dynamic amplitude of low-
frequency fluctuations (dALFF) analyses on 42 subjects. In
the migraineurs, significantly decreased dALFF was
observed in certain brain regions (the bilateral anterior
insula, bilateral lateral orbitofrontal cortex, bilateral medial
prefrontal cortex, bilateral anterior cingulate cortex, and
left middle frontal cortex). SVM was used for classification,
giving an accuracy of 83.33% (Table Il).

Rocca et al (2021)*® collected a total of 268 T2 and T1
weighted brain MRI scans from patients of multiple sclerosis,
migraine and other mimics of the former. The final trained
model was compared with two expert neuroradiologists.
An accuracy of 92.9% was attained using Convolutional
Neural Network (CNN) (Table IlI).

Tu etal (2020)* conducted a multi-level study using linear
SVM for identifying an fMRI marker for differentiating
between migraineurs and healthy controls (HCs), assessing
its generalisability, validating it by differentiating between
migraine and other chronic pain disorders, and for assessing
its response with treatment, respectively. Accuracies of
91.4%, 84.2% and 73.1% were obtained in the three
diagnostic studies respectively (Table II).

Yang et al (2018)* used AlexNet and Inception module-
based GoogleNet CNN models to diagnose and classify

migraine based on the pre-processed resting-state fMRI
data and the three indices ALFF, Regional Homogeneity
(ReHo) and Regional Functional Correlation Strength (RFCS)
extracted from it. GoogleNet CNN model was found to
have a higher accuracy of 99.25% (Table IlI).

In the study conducted by Zhang et al (2016)*, along with
fMRI (ALFF, ReHo and RFCS) data, gray matter maps were
also created using sMRI. 116 features were selected for
each map and fed to a multi-kernel SYM model. An accuracy
of 83.67% was obtained (Table IlI).

Schwedt et al (2015)* used 4 classifiers (Table Il) to classify
migraineurs into chronic and episodic and differentiate
them from HCs, as well as to test the currently used threshold
of 15 headache days/month for differentiating chronic from
episodic migraine. Using sMRI scans and PCA, principal
components for the cortical area, thickness, and volume
features were used as input data. DQDA was found to have
the highest accuracy of 86.3% (HC vs chronic migraine) in
all the classification schemes.

Li etal (2020)* used a new method based on neighbourhood
rough set and PCA for feature extraction from resting state
functional MR scans. KNN model was most accurate (100%)
at binary classification (migraine vs HC) (Table Ill).

Jorge-Hernandez et al (2014)* and Meng et al (2018)*°
performed feature extraction based on graph theory using
fMRI (T1, EPIBOLD) and magnetoencephalogram (MEG) as
input variables respectively. After feature extraction, the
images were classified into migraineurs vs HCs. In the study
by Jorge-Hernandez et al, multiple ML algorithms were
evaluated (Table Ill) and the highest accuracy was achieved
using ANN (92.86%). In the study by Meng et al,an accuracy
of 81.25% was achieved using CNN.

Two studies (Garcia-Chimeno etal and Chong et al) (Table Ill)
employed both clinical data and MRI scans as features for
classification and diagnosis of migraine. Garcia-Chimeno etal
(2017)*" recruited HCs, subjects with sporadic migraine and
chronic migraine with medication overuse. They were
administered a set of questionnaires assessing the extent of
pain, mental health and 1Q, and diffusion tensor MRI. They
used three classification algorithms (Tablel) and then employed
four feature selection algorithms to improve classification
accuracy, taking it as high as 98% with SVM and NB.

Chong et al (2021)*? also used a combination of clinical
questionnaires and imaging data (T1-weighted and
diffusion tensor MRI) for classification, achieving an
average accuracy of 97.1% for identifying migraineurs
using an LR algorithm (Table II).

Risk of Bias and Applicability Assessment

QUADAS-2 has four domains for risk of bias assessment
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(patient selection, index test, reference standard and flow
and timing) and three for applicability concerns (patient
selection, index test, reference standard) (Fig. 3).

There were a total of four studies (11.8%) with an overall
low risk of bias — three of these however, had a high
applicability concern in the patient domain?**°32 Holsteen
et aP' was the only study which had an overall low-risk of
bias as well as low applicability concerns.

Twenty-three out of the 34 studies hadhigh'-risk of bias in
the patient selection domain as per QUADAS-2, the most
frequent cause being a case-control study design. Not
mentioning the sampling method or an objective inclusion/
exclusion criteria also increase the risk of bias in this domain,
as well as raise applicability concerns. Applicability concerns
for the present review was considered’high’in the patient
domain if subjects less than 18 years old were
included?*303233,

The studies that did not mention the validation method
used for their models were given‘unclear'risk of bias in the
index test domain'®2238404348 Applicability concernsin the
index test domain were low for all 34 studies.

The studies that did not mention a recognised reference
criteria were considered having ‘unclear’ risk of bias and
applicability concernin the reference standard domain since
subjects may have been misdiagnosed as having migraine
patients22,27,28,33,36,39,48-51 .

Risk of bias in the flow and timing domain was considered
‘unclear’ if all subjects were not administered a reference
standard or if it was not the same for al[?236324049-51,

Discussion

Headache is the most common presenting neurological
symptom in primary care’. Migraine is a significant contributor
to global disease burden and disability. It has a complex
pathophysiology which includes channelopathies as well as
various neurovascular phenomena and poses a diagnostic
dilemma for physicians owing to its varied and non-specific
clinical presentation. Some radiological features like small
regions of cerebral infarcts and white matter hyperintensities
arealso seenin other neurological conditions.

Al can help to identify medical data from multiple sources’.
In recent times, several new diagnostic questionnaires have
been validated, e.g., ID Migraine®, HUNT-4*, a web-based
questionnaire by Min Kim>® et al, etc. Feature selection
algorithms can help select clinical attributes from such
questionnaires and modalities most relevant in the
diagnosis of migraine, as done in the study by Garcia-
Chimeno et aP'. Al can reduce inter-observer and intra-
observer variation, and save time and effort.

To our knowledge, this is the first systematic review
reporting the use of Al in the diagnosis of migraine in
adults. Thirty-four papers were included in this review
spanning close to a hundred Al models. A meta-analysis
was not possible due to marked heterogeneity in study
design, input data and reporting of performance
parameters.

Two studies in this review reported a best accuracy of 100%-
Khayamnia et al’® using clinical attributes in SVM and Li et
al®® using fMRIin kNN. In comparison, the highest accuracy
among studies using EEG was 93.3% by Akben etal (2012)".
The two studies (Chong et al’? and Garcia-Chimeno et al®')
which used both clinical data and MRI scans for classification
of migraine got accuracies as high as 97.06% and 98%
respectively.

The median accuracy achieved by the studies included in
this review was highest for those employing radiological
data (92.13%) and lowest for those using clinical attributes
(81%) for diagnosing migraine. However, it must be noted
that all studies with low-risk of bias used clinical data for
diagnosis. This highlights the need for developing and training
of more models using clinico-demographic or questionnaire-
based data since that is the primary mode of migraine
diagnosis currently® and also the most viable diagnostic
avenue to be pursued; considering patient convenience and
expenses incurred, and the lack of availability of other
modalities; especially in low-resource settings.

Thereis increasing interest in the possible applications of
Alin the field of medicine. However, its application comes
with challenges. Most studies in this review employed
relatively small data sets whereas the development of an
accurate algorithm relies on larger ones. Thus, we
recommend use of bigger, more diverse data sets.
Additionally, the Al models developed should be open
source to make external validation possible. These measures
will boost accuracy and ensure generalisability. Further,
systematic and uniform reporting should be ensured to
minimise omission of importantinformation. Appropriate
study designs should be employed to reduce risk of bias
and increase reliability of the conducted studies. The need
of the hour is to develop a model for the integration of Al in
workflow. Such recommendations were made by only two
studies in our review?’3,

Al models have the potential to minimise inequalities in
healthcare. However, developing countries face a unique
challenge in terms of the application of this new technology
in low-resource settings. Training of clinicians would also
be required to be able to use this technology effectively. In
order to address these issues and other potential
challenges, more studies need to be conducted in such
settings, with use of indigenous datasets.
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There also exist ethical concerns regarding ownership and
use of the data for developing Al models. These concerns
should be addressed by developers of the software and all
stakeholders.

Strengths of this review

All English-language peer-reviewed articles from across
the world were included in this review. Clinical setting for
patient selection was not a bar in the inclusion or exclusion
of a study. Many types of models (Fig. 1) using various
types of input data were assessed. Risk of bias for the
included studies was assessed using the standardised
QUADAS-2 tool.

Limitations of this review

A quantitative synthesis of results was not possible due to
the heterogeneity, high-risk of bias and small sample size
of a significant number of studies included in this review.
Accuracy was chosen as the primary outcome measure as
other metrics were reported infrequently. However,
accuracy may be influenced by the quality of the dataset.
We excluded studies that were not in the English language
and thus may have missed out on some potentially
significant findings reported in these articles. Rarer forms
of migraine and subjects below the age of 18 years, though
a small subset, were notincluded in our review.

Other uses of Al in Migraine

Al has also been employed in other aspects of migraine
like delineation of pathophysiology, prognostication,
pharmacotherapy and cost analysis*®=%; but these studies
were beyond the scope of the present systematic review.

Conclusion

This review aims to highlight recentadvances in the diagnosis
of migraine using machine learning. It is a step towards
building comprehensive data driven diagnostic models for
migraine. Future studies should use larger, more diverse
samples to achieve greater accuracy and generalisability
while paying attention to ethical implications. Concerted
efforts are necessary to ensure that these models progress
from their current experimental status to the point of
deploymentin actual clinical settings to improve patient care.
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